Chemistry

General course information

Year 12:

Teacher 1:

Teacher 2:

Bonding (P)
Kinetics (P)
Introduction to Organic Chemistry
Alkanes (O)
Halogenoalkanes (O)
Alkenes (O)
Alcohols (O)
Organic Analysis (O)

Atomic Structure (P)

Energetics (P)

Group 2 (I) Group 7 (I) Periodicity (I)

Amount of Substance (P)

Chemical Equilibria (P)

Oxidation and Reduction (P)

	Thermodynamics (P)		
Year 13:	Acids & Bases (P)		
	Electrode Potentials (P)		
Teacher 1:	Transition Metals (I)		
	Reactions of Ions in Aqueous Solutions		
	Properties of Period 3 elements and		
	their oxides (I)		
	Optical Isomerism (O)		
	Aldehydes & Ketones (O)		
Taaahar 3.	Carboxylic Acid & Derivatives (O)		
leacher 2:	Rate Equations (P)		
	Aromatic Chemistry (O)		
	Amines (O)		
	Polymers (O)		
	Amino Acids, Proteins & DNA (O)		
No.	Equilibrium Constant, K _p for		
	homogenous systems (O)		
	NMR (O)		
	Chromatography (O)		
	Organic Synthesis (O)		

How is it assessed?

3 Exam papers

Paper 1

Physical & Inorganic Chemistry Relevant practical skills

Paper 2

Physical & Organic Chemistry Relevant practical skills

- 2 hours
- 105 marks: short and long answer questions
- 2 X 35% of A-Level

<u>Paper 3</u>

Mixed Yr12 & Yr13 content Theory and practical

- 2 hours
- 90 marks
- 30% o f A-Level
- 40 marks: practical techniques & data analysis
- 20 marks: content
- 30 marks multiple choice

Practical certificate

12 required practicals that must be conducted, written up and passed

Entry requirements

- Minimum grade 66 in Combined or grade 6 for the Separate Sciences
- Minimum grade 6 in Maths
- Minimum grade 5 in English
- Supported subjects: Maths, Biology, Physics
- A real interest in the subject!

Transition booklet

Part One - Using Maths in Chemistry

Standard form and Significant figures

Converting Units

Measuring chemicals – the mole

Measuring chemicals - Solutions and concentration

Part Two - Skills for Practical Chemistry

Drawing tables

Task for submission

Part Three – Research Activities

Cornell notes and Referencing

Task for submission

Part four - Minimising Risk

Risk Assessment

Task for submission

Yr11 – 12 Transition Activities Subject: Chemistry

1.2 Amount of Substance

<u>Topic</u>	<u>Requirements</u>	Practical Skills
RAM (A _r) and (M _r)	 Define both Calculate 	
The Mole	 Avagadro constant Conc. and units Calculate mole from mass, conc., volume 	Use standard formAppropriate sig.fig
Balanced equations	 Construct and balance full and ionic equations Use balanced eqn to work out mass, conc. and vol Titrations Uncertainty of titre 	 Ethanoic acid in vinegar Calcium carbonate (indigestion tablets) MHCO₃ Succinic acid Aspirin Hydrated salt Water of crystallisation
Atom economy and percentage yield	 Calculate Economic, ethical and environmental advantages 	Yield for conversion of Mg to MgOGroup 2 carbonate to its oxide
Empirical and molecular formula	 Define Understand the relationship Calculate from data 	- Find empirical formula of metal oxide
Ideal gas equation	Know and rearrange equationsUnits	- Find M _r of volatile fluid

Do Now...

Determine the relative molecular mass of the following:

- NaOH
- CaCO₃
- Mg(OH)₂

An atom has half as many protons as an atom of ²⁸Si and also has six fewer neutrons than an atom of ²⁸Si. Give the symbol, including the mass number and the atomic number, of this atom.

Magnesium nitride reacts with water to form magnesium hydroxide and ammonia.

(i) Balance the equation, given below, for the reaction between magnesium nitride and water.

 Mg_3N_2 + $H_2O \rightarrow Mg(OH)_2$ + NH_3

(ii) Calculate the number of moles, and hence the number of molecules, of NH_3 in 0.263 g of ammonia gas.

(The Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$)

Determine the relative molecular mass of the following:

- NaOH
- CaCO₃
- Mg(OH)₂

NaOH:	23.0 + 16.0 + 1.0 = 40
CaCO ₃ :	40.1 + 12.0 + (16.0 X 3) = 100.1

Mg(OH)₂: $24.3 + ((16.0 + 1.0) \times 2) = 58.3$

An atom has half as many protons as an atom of ²⁸Si and also has six fewer neutrons than an atom of ²⁸Si. Give the symbol, including the mass number and the atomic number, of this atom.

15 N

Mass number = 15 <u>AND</u> atomic number = 7 (1)

Magnesium nitride reacts with water to form magnesium hydroxide and ammonia.

(i) Balance the equation, given below, for the reaction between magnesium nitride and water.

 Mg_3N_2 + $H_2O \rightarrow Mg(OH)_2$ + NH_3

(ii) Calculate the number of moles, and hence the number of molecules, of NH_3 in 0.263 g of ammonia gas.

(The Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$)

(i)
$$Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$$
 (1)

(ii) Moles
$$NH_3 = \frac{0.263}{17}$$
 (=0.0155 mol) (1)

Number of molecules of $NH_3 = 0.0155 \times 6.02 \times 10^{23}$ (1)

[mark conseq] = 9.31×10^{21} (1) [range 9.2×10^{21} to 9.4×10^{21}] Conseq (min 2 sig fig)

How do we know how much 'stuff' we have...or how much we need...or where it's all gone?!

Explain the difference between empirical and molecular formulae Carry out calculations: to find empirical formula from data to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

Things we should know...

RELATIVE ATOMIC MASS

- Weighted mean mass of one atom of an element compared with one twelfth of the mass of an atom of carbon -12.
- Symbol A_r or RAM

24 August 2022

- to find empirical formula from data
- to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

Things we should know...

RELATIVE MOLECULAR MASS

- Weighted mean mass of a molecule or a compound, or element, compared with one twelfth of the mass of an atom of carbon-12
- Find the RMM by adding up RAM of atoms present
- Symbol M_r and RMM
- Try these: NaOH, Na₂O

 Brackets: everything inside the bracket is multiplied ie (NO₃)₃ means 3 nitrogens and 9 oxygens

24 August 2022

 A dot indicates water of crystallisation and can be considered as a plus sign e.g MgSO₄.5H₂O means add the RMM of MgSO₄ + 5xH₂O Explain the difference between empirical and molecular formulae Carry out calculations: to find empirical formula from data

to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

24 August 2022

Empirical Formula

- The empirical formula of a compound is the formula which shows the simplest whole-number ratio in which the atoms in that compound exist.
- It can be calculated if the composition by mass of the compound is known.
- The **molecular formula** of a substance is the formula which shows the number of each type of atom in the one molecule of that substance.
- It applies only to molecular substances, and can be deduced if the empirical formula and molar mass of the compound are known.

Molecular Formula - Empirical Formula Comparision

Molecular formula

• TOTAL number of atoms of each element present in a molecule of the compound

Empirical Formula

Simplest ratio of the atoms of each element in a compound

to find empirical formula from data

to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

24 August 2022

Working Out Empirical Formula

compound	empirical	molecular
Water	ALC:	
Methane		
Butane		
Benzene		C ₆ H ₆
Hexane		

to find empirical formula from data

to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

24 August 2022

Working Out Empirical Formula

compound	empirical	molecular
Water	H ₂ O	H ₂ O
Methane	CH ₄	CH ₄
Butane	C ₂ H ₅	C ₄ H ₁₀
Benzene	СН	C_6H_6
Hexane	C ₃ H ₇	C ₆ H ₁₄

- to find empirical formula from data
- to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

Calculating Empirical Formula

You can use information about reacting masses to calculate the formula of a compound. Here is an example:

3.2g of sulfur reacts with 3.2g oxygen to produce 6.4g of an oxide of sulfur.

What is the formula of the oxide?

Use the fact that the A_r of sulfur is 32 and the A_r of oxygen is 16

24 August 2022

Explain the difference Carry out calculations to find empirical to find molecula	e between empirica s: l formula from data r formula from the	l and molecular formulae empirical formula & RMM			<u>24 August 2022</u>
2.2g of culture report	e with 2 De everes	Key W	/ords: RAM, RAM, er	npirical formula, moles	5
3.2g of sulfur react	s with 3.2g oxygei	1 to produce 6.4g of a sulp	nur oxide.		S
	Step	Action	S	0	0 0
	1	find masses	3.2	3.2	
	2	look up given A _r values	32	16	
	3	divide masses by A _r	0.1	0.2	

The calculation tells us that for every 1 sulfur atom we need 2 oxygen atoms therefore the formula is: SO_2

1

2

find the ratio

4

Explain the difference between empirical and molecular formulae Carry out calculations: to find empirical formula from data

to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

24 August 2022

Empirical formulae question

• If 9g Aluminium reacts with 35.5g Chlorine what is the empirical formula of the compound formed?

step	action	Cl
1	find masses	
2	look up A _r values	
3	divide masses by A _r	
4	find the ratio	

Explain the difference between empirical and molecular formulae Carry out calculations: to find empirical formula from data

to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

Empirical formulae question

• If 9g Aluminium reacts with 35.5g Chlorine what is the empirical formula of the compound formed?

step	action	ΑΙ	Cl
1	find masses	9.00	35.50
2	look up A _r values	27.00	35.50
3	divide masses by A _r	0.33	1.00
4	find the ratio	1	3

24 August 2022

Explain the difference between empirical and molecular formulae Carry out calculations:	24 August 2022
to find empirical formula from data to find molecular formula from the empirical formula & RMM	
Key Words:	RAM, RAM, empirical formula, moles

Example

- Caffeine has an elemental analysis of 49.48% carbon, 5.190% hydrogen, 16.47% oxygen, and 28.85% nitrogen. It has a molar mass of 194.19 g/mol.
- What is the molecular formula of caffeine?

- to find empirical formula from data
- to find molecular formula from the empirical formula & RMM

Kev	Wo	rds

Caffeine has an elemental analysis of 49.48% carbon, 5.190% hydrogen, 16.47% oxygen, and 28.85% nitrogen. It has a molar mass of 194.19 g/mol.

What is the molecular formula of caffeine?

Examples-Caffeine has an elemental analysis of 49.48% carbon, 5.190% hydrogen, 16.47% oxygen, and 28.85% nitrogen. It has a molar mass of 194.19 g/mc What is the molecular formula of caffeine?

(Hint-Save the molar mass 194.19g/mol until the end)

49.48% C, 5.190%H, 16.47% O and 28.85% N

Step 1 Mass is 100% so % becomes grams

49.48g C, 5.190gH, 16.47g O and 28.85g N

Step 2 determine the moles of each element

49.48g C x (12.0 g C / mole) = 4.123 moles C 5.190g H x (1.0 g H / mole) = 5.190 moles H 16.47g O x (16.0 g O / mole) = 1.029 moles O 28.85g N x (14.0 g N / mole) = 2.061 moles N

Step 3 determine the mole ratio by dividing each elements number of moles by the smallest

Dividing by the smallest (1.029) we get

C: 4.123 / 1.029 = 4.007 H: 5.190 / 1.029 = 5.044 O: 1.029 / 1.029 = 1.000 N: 2.061 / 1.029 = 2.002

Step 4 Double, triple .. to get an integer is they are not all whole numbers

The values are all really close to whole numbers.

Empirical Formula= C₄H₅ON₂

Example- Molecular Formulas (Steps 5-7)

It has a molar mass of 194.19 g/mol.

- to find empirical formula from data
- to find molecular formula from the empirical formula & RMM

Key Words: RAM, RAM, empirical formula, moles

Calculations involving empirical & molecular formulae

Combustion analysis

0.500g of substance X was burnt on oxygen to give 0.733g of CO_2 and 0.300g water.

- E.g. Work out mass of C in 0.733g of $CO_2 = 0.733 \times 12/44$
- Then...

Show
you
know

Calculation	С	Н	0
Mass or %			
Molar mass			
No.moles			
ratio			
Whole number ratio			
Empirical Formula			

VERY IMPORTANT If the whole number ratio comes out as .5 eg 4.5 1.5 then you must multiply everything by 2 you can not round up or down. 24 August 2022

Any questions? Please email.

cnelson@cityleicester.leicester.sch.uk

